Хайям, Омар (Гиясаддин Абу-ль-Фатх Омар ибн Ибрахим аль-Хайям Нишапури) (перс. غیاث الدین ابوالفتح عمر بن ابراهیم خیام نیشابورﻯ, 18 мая 1048, Нишапур — 4 декабря 1131, там же), выдающийся таджикский и персидский поэт, математик, астроном, философ.
Хайям внёс вклад в математику своим сочинением «Трактат о доказательствах проблем ал-джебры и ал-мукабалы». Это объёмный свод алгебраических знаний того времени. Учёный изложил в своём труде методы решения не только квадратных, но и кубических уравнений. До Хайяма был уже известен геометрический метод Архимеда: неизвестное строилось как точка пересечения двух подходящих конических сечений. Хайям привёл обоснование этого метода, классификацию типов уравнений, алгоритм выбора типа конического сечения, оценку числа (положительных) корней и их величины. К сожалению, Хайям не заметил, что кубическое уравнение может иметь 3 вещественных корня. До формул Кардано Хайяму дойти не удалось, но он высказывал надежду, что явное решение будет найдено в будущем.
В «Трактате об истолковании тёмных положений у Евклида», написанном Хайямом около 1077 года, он, вопреки древней традиции, рассматривает иррациональные числа как вполне законные. В этой же книге Хайям пытается доказать пятый постулат Евклида, исходя из более очевидного его эквивалента: две сходящиеся прямые должны пересечься.
Хайям предложил также новый календарь — более точный, чем григорианский. Вместо цикла «один високосный год на 4 года» он выбрал следующую, более точную подходящую дробь «8 високосных на 33 года». Другими словами, за период из 33 лет будет 8 високосных лет и 25 обычных. Ошибка в один день накапливается тогда за 4500 лет. Проект Омара Хайяма был утверждён и лёг в основу иранского календаря, который действует в Иране в качестве официального с 1079 года.